ELECTRONIC STRUCTURE OF ARYLAMINES. ELECTRONIC SPECTRA AND CHARGE DISTRIBUTIONS

P.ZACH and S.NEŠPŮREK
Institute of Macromolecular Chemistry, Czechoslovak Academy of Sciences, Prague 6

Received February 3rd, 1971

By using the HMO and Pariser-Pople-Parr methods, the electronic spectra of some oligoaniline donors were studied, and the results were compared with the experiment. The distributions of electron densities in the ground state and excited singlet states were calculated. For a molecule of diphenylamine, the amount of charge transfer in the decomposition of several lowest singlet excited states was determined.

The problem of electrical conductivity of aniline black and its salts, and also of complexes of p phenylenediamine and its N -alkyl derivatives has been dealt with in several papers ${ }^{1-3}$. The same can be said about linear oligoaniline derivative and their complexes ${ }^{4-8}$. The donor activity of oligomers increases with the length of the chain to a certain limit value. The same dependence in connection with the decrease of the ionization potential of bases is exhibited also by the electrical conductivity of complexes in which they represent the donor component. It is evident that oligomers which are extended in the sense of their homologous series represent a suitable model for an investigation of a polymer having the same structural unit ${ }^{5}$.

At present, data on the electronic structure and spectral properties of bases alone are lacking, with certain exceptions ${ }^{9-11}$. The present paper is devoted to an investigation of the electronic spectra and the localization of the π-electron charge on molecules of polyaniline compounds, both experimentally and theoretically, using the HMO method, and in some cases also using a method of limited configuration interaction (LCI) of monoexcited configurations set up with the aid of selfconsistent molecular orbitals.

The compounds were prepared by a method described earlier ${ }^{5}$. Aniline was purified by distillation in vacuo (pressure 10^{-2} Torr), the other amines by crystallizing several times from ethanol or dioxane (the solution was bubbled through with hydrogen in the presence of 5% palladium on charcoal). The solutions in spectrally pure ethanol and cyclohexane were prepared in an argon atmosphere directly before measurement. The samples in the solid state were prepared in the form of thin layers, deposited by sublimation on uviol glasses in vacuo (pressure 10^{-5} Torr). The ultraviolet absorption spectra were recorded with a recording spectrophotometer CF-4 Optica Milano. The molar extinction coefficients, $\varepsilon(v)$, were determined from Lambert--Beer's law; no substantial deviations from this law could be observed within the concentration range under investigation. The oscillator strength of the electronic transition characterized by the extinction curve $\varepsilon(v)$ was determined ${ }^{12-14}$ from the equation $f=4 \cdot 32 \cdot 10^{-9} \int_{0}^{\infty} \varepsilon(v) \mathrm{d} v$, in which the value of the inte-
gral was approximated by the expression $\varepsilon_{\max } . \Delta v$, where $\varepsilon_{\max }$ is the optical extinction in the maximum, and Δy is the band halfwidth in cm^{-1}.

RESULTS AND DISCUSSION

Experimental Data

The experimental absorption electronic spectra of the compounds under investigation presented formally in Scheme 1 in the planar trans-conformation along with the numbering of atoms introduced to simplify the presentation of results are shown in Fig. 1. Cyclohexane was used as solvent in the spectral measurements; in the series A, ethanol was used, since the higher members ($n \geqq 4$) are little soluble in cyclohexane.

The spectra thus recorded exhibit three characteristic bands at 200, 230-265 and $280-320 \mathrm{~nm}$, similarly to the monosubstituted derivatives of benzene (200, 230-254, $286-296 \mathrm{~nm})^{13}$. The absorption intensity of bands increases with the increasing chain length in the homologous series if the same molar concentration is preserved. The positions of the absorption maxima suggest that in the case of this increase, and starting from a certain member of the series, there is no substantial improvement in the partial conjugation of the π-electron system of the molecules (Table I). As a rule, the inclusion of the electrons of the end substituents into the π-electron system of the molecule

4-7

Scheme 1
is refiected in an increase in the molar extinction coefficient and a drop in the energy of the first spectral transition.

The effect of polarity of the solvent on the positions of the maxima of long-wave bands is not large and indicates a relatively weak interaction between the solvents employed and the compounds under investigation. The maximum deviation in the position of the maximum of the long-wave band of the absorption spectra of compound dissolved in hexane, cyclohexane, 1,4-dioxane, ethanol and methanol is $\pm 3 \mathrm{~nm}$. Analogously, the fact that the interaction between molecules of the compound itself in the solid state is not too strong is corroborated by the low shift range of the absorption maximum toward the red region going from the solution to the solid state.

Fig. 1
Absorption Electronic Spectra of Compounds $\mathrm{A}-\mathrm{E}(a-e)$ in Cyclohexane
Concentrations of the benzene rings in the measuring cell are approximately constant and correspond to a concentration $c=1 \cdot 3 \cdot 10^{-5} \mathrm{~mol}^{-1}$ of compound $\mathrm{X}_{3}(\mathrm{~A}-\mathrm{E})$. Numerical designation of curves is identical with the index n in the chemical formula (Scheme 1). Anomaly: a ethanol as solvent, $c=1 \cdot 9 \cdot 10^{-5} \mathrm{moll}^{-1}, \mathrm{~A}_{1}$ aniline; $d \mathrm{D}_{2}, c=4 \cdot 2 \cdot 10^{-5} \mathrm{~mol} \mathrm{l}^{-1}$.

The difference between the absorption spectra recorded in solution and in the solid state for compounds of the series A is given in Table II.

Table I
Positions of the Absorption Maxima and the Corresponding Values of Molar Extinction Coefficients of Amines under Investigation

Amine	$\begin{gathered} \lambda_{1} \\ \mathrm{~nm} \end{gathered}$	$\begin{gathered} \varepsilon_{1} \cdot 10^{-3} \\ \mathrm{~mol} \end{gathered}$	$\begin{aligned} & \lambda_{2} \\ & \mathrm{~nm} \end{aligned}$	$\varepsilon_{2} \cdot 10^{-3}$	$\begin{gathered} \lambda_{3} \\ n \mathrm{n} \end{gathered}$	$\varepsilon_{3} \cdot 10^{-3}$	Solvent	$\begin{gathered} \text { c. } 10^{5} \\ \operatorname{mol}^{-1} \end{gathered}$
A_{2}	284	$21 \cdot 3$			207		ethanol	1.9
$\mathrm{A}_{2}{ }^{\text {a }}$	286	24.0	237	$5 \cdot 2$			ethanol	
$\mathrm{A}_{2}{ }^{\text {b }}$	282	20.0			207	21		
$\mathrm{A}_{2}{ }^{\text {c }}$	286	19.5			207	21.4	ethanol	
$\mathrm{A}_{2}{ }^{\text {d }}$	286	24	230	7.6			hexane	
A_{3}	304	27.5	243		208		ethanol	1.9
$\mathrm{A}_{3}{ }^{\text {c }}$	304	27					ethanol	
A_{4}	315	$30 \cdot 1$	246		208		ethanol	1.4
A_{5}	318	31.0	248		208		ethanol	$1 \cdot 1$
A_{7}	328						1,4-dioxane	
B_{1}	309	1.9	243	8.7	206		cyclohexane	3.9
B_{2}	290	$22 \cdot 1$			206		cyclohexane	1.9
B_{3}	305	26.0			206		cyclohexane	1.3
C_{1}	287	$2 \cdot 0$	234		201		cyclohexane	4.0
$\mathrm{C}_{1}{ }^{\text {f }}$	281	1.4	230	8.2	196	$34 \cdot 5$	buffer $\mathrm{pH} 8.0$,
C_{2}	288	17.7	246		206		cyclohexane	1.9
C_{3}	304	29.8	252		206		cyclohexane	1.3
D_{2}	290	20.8	244	$6 \cdot 2$	208		cyclohexane	$2 \cdot 1$
E_{2}	299	$26 \cdot 1$			208		cyclohexane	2.0
E_{3}	311	33.4			208		cyclohexane	1.3

${ }^{a}$ Ref. $^{25}{ }^{b}{ }^{b}$ ref. ${ }^{26}$, ${ }^{\text {ref. }}{ }^{27},{ }^{d}$ ref. ${ }^{13},{ }^{e}$ ref. ${ }^{28},{ }^{S}$ ref. ${ }^{29}$

Table II
Change in the Position of the Absorption Bands (λ, nm) going from the Ethanol Solution to the Solid State

	Solution		Solid state	
	λ_{1}	λ_{2}	λ_{1}	λ_{2}
$\mathrm{~A}_{2}$	284	230	290	253
$\mathrm{~A}_{3}$	304	243	313	270
$\mathrm{~A}_{4}$	315	246	350	305

Calculations

Calculations presented in this paper are of double type. For all compounds investigated here they were carried out using a simple HMO method. In this way, basic information was obtained, and it was possible to make some comparisons. Moreover, the compounds C_{1} (aniline), A_{2} (diphenylamine) and $\mathrm{A}_{3}\left(\mathrm{~N}, \mathrm{~N}^{\prime}\right.$-diphenyl-p-phenylenediamine) were studied in more detail using the LCI SCF LCAO-MO method. The programme employed was verified by comparing the results obtained with those published by other authors for compound C_{1} (ref. ${ }^{9}$) and partly also A_{2} (ref. ${ }^{10}$), and used to find the change in the bond orders and the π-electron charge distributions of molecules $\mathrm{A}_{2}, \mathrm{~A}_{3}$ by excitation. Using the calculated positions of the absorption maxima, respective values of the oscillator strengths and estimated band halfwidths (after their preliminary assignment), simplified theoretical absorption spectra for the singlet-singlet transitions were simulated with a computer.

The HMO Method

As it is usual, in the calculations of this type, it is assumed for the α resonance and β coulomb integrals, that $\alpha_{\mathrm{X}}=h_{\mathrm{X}} \beta+\alpha_{\mathrm{C}}, \beta_{\mathrm{XY}}=k_{\mathrm{XY}} \beta$ (where β is the so-called β-unit equal to β_{CC} for the benzene bond and α_{C} is identified with the zero of the energy scale). The parameters h, k were chosen as follows: $h_{\mathrm{N}}=1.5, k_{\mathrm{CN}}=0.8$ for the amine group, $h_{\mathrm{CI}}=2, k_{\mathrm{CCI}}=0.4$ for a chlorine atom ${ }^{12}$; for the group $\mathrm{R}=\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$, the values $h_{\mathrm{R}}=1, k_{\mathrm{CR}}=0.8$ were used, which proved to be useful in our previous calculations employing for this case the inductive hyperconjugation model.

Fig. 2
Relation between the Energy of the First Intense Spectral Transitions $E_{1}(\mathrm{eV})$ and the Difference of the HMO Energies of the First Unoccupied $\varepsilon(-1)(|\beta|)$ and highest Occupied $\varepsilon(+1)$. . $(|\beta|)$ Molecular Orbitals $E\left(\mathrm{~N} \rightarrow \mathrm{~V}_{1}\right)(|\beta|)$ for Compounds under Investigation with the Exception of the Terms of the Series Having an Index $n=1$

A regression line has been drawn through the points corresponding to compounds of the series \mathbf{A}.

The HMO energies, $\varepsilon(+1)(|\beta|), \varepsilon(+2)(|\beta|)$ of the two highest energy occupied MO and $\varepsilon(-1)(|\beta|), \varepsilon(-2)(|\beta|)$ of the two lowest energy unoccupied MO are given in Table III. In accordance with the data in Table I, the decrease in $\varepsilon(+1)(|\beta|)$ connected with an increase in the index of members of the individual series diminishes steeply. Using the experimental energy values $E_{1}(\mathrm{eV})$ of the first intense singlet-singlet spectral transitions listed in Table I, and putting $E\left(N \rightarrow V_{1}\right)=$ $=\varepsilon(-1)-\varepsilon(+1)$, it is possible to investigate the mutual correlation of these quantities for the compounds under investigation. The regression line corresponding to their dependence for the compounds of the A series and described by the equation $E_{1}=$ $=2.273 E\left(\mathrm{~N} \rightarrow \mathrm{~V}_{1}\right)+0.709$ is represented in Fig. 2. The respective correlation is statistically important on the 0.1% level. An estimate of E_{1} for compound A_{6}, as yet unsynthesized, gives $3.86 \mathrm{eV}(321 \mathrm{~nm})$.

The calculated bond orders $p_{\mu v}$ (in the units 10^{-3}) and the net π-charges (in the units $10^{-3}|e|$), localized on the individual π-centres for the singlet state of molecules $\mathrm{C}_{1}, \mathrm{~A}_{2}$ and A_{3} with the lowest energy are added to Scheme 2. For types of molecules

Table III

Energies of the Highest Occupied $\varepsilon(+i)(|\beta|)$ and Lowest Unoccupied $\varepsilon(-j)(|\beta|)$ HMO Orbitals of Compounds under Investigation

Experimental energy values of the first intense spectral transitions $E_{1} . E\left(\mathrm{~N} \rightarrow \mathrm{~V}_{1}\right)=\varepsilon(-1)-$ $-\varepsilon(+1)$.

Compound	$\varepsilon(+2)$	$\varepsilon(+1)$	$\varepsilon(-1)$	$\varepsilon(-2)$	$E\left(\mathrm{~N} \rightarrow \mathrm{~V}_{1}\right)$	E_{1}, eV
A_{2}	-1.0000	-0.6074	1.0000	1.0000	1.6074	4.36
$\mathrm{~A}_{3}$	-0.7591	-0.4778	1.0000	1.0000	1.4778	4.08
$\mathrm{~A}_{4}$	-0.6074	-0.4269	1.0000	1.0000	1.4269	3.94
$\mathrm{~A}_{5}$	-0.5258	-0.4022	1.0000	1.0000	1.4022	3.90
$\mathrm{~A}_{6}$	-0.4778	-0.3884	1.0000	1.0000	1.3884	-
A_{7}	-0.4474	-0.3779	1.0000	1.0000	1.3799	-
B_{1}	-1.0000	-0.5762	1.0000	1.0000	1.5762	4.01
$\mathrm{~B}_{2}$	-0.7438	-0.4619	1.0000	1.0000	1.4619	4.28
$\mathrm{~B}_{3}$	-0.5919	-0.4187	1.0000	1.0000	1.4187	4.07
$\mathrm{~B}_{4}$	-0.5144	-0.3975	1.0000	1.0000	1.3975	-
C_{1}	-1.0000	-0.7438	1.0000	1.0833	1.7438	4.36
C_{2}	-0.8792	-0.5144	1.0000	1.0000	1.5144	4.31
C_{3}	-0.6625	-0.4415	1.0000	1.0000	1.4415	4.08
C_{4}	-0.5541	-0.4094	1.0000	1.0000	1.4094	-
D_{2}	-0.9497	-0.5803	1.0000	1.0000	1.5803	4.28
E_{2}	-0.5856	-0.3748	1.0000	1.0000	1.3748	4.15
E_{3}	-0.4813	-0.3688	1.0000	1.0000	1.3688	3.99
E_{4}	-0.4361	-0.3656	1.0000	1.0000	1.3656	

studied these values did not vary on the end rings and substituents with an accuracy of 10^{-4} when the chain was extended by a further unit, starting from $n=4$; near the centres of the molecules, the same holds for $n=5$. The values of the above quantities for compound A_{7} are given for comparison.

The LCI SCF LCAO-MO Method

The approximations used in the present work to solve the problem of motion of the π-electrons in the field of the molecular σ-skeleton and the way of selecting semiempirical parameters correspond to a procedure commonly known as the Pariser-PopleParr method ${ }^{14}$.
C_{1}
A_{2}
A_{3}

S:

S_{1}

$s(i)$	$=s(2) ; s(3) ; s(4) ;$		
$\Delta a_{N}(i)$	$=475$	395	226
$P_{12}(i)$	$=747$	459	236
$\rho_{67}(i)$	$=442$	335	362

$s(i)=s(2) ; s(3) ; s(6)$;

$$
\begin{array}{rlll}
\Delta a_{N}(i) & =475 & 395 & 226 \\
P_{12}(i) & =747 & 459 & 236 \\
p_{67}(i) & =442 & 335 & 362
\end{array}
$$

$$
\begin{array}{llll}
S(i) & =s(2): S(3) ; s(6) \\
p_{12}(i) & =701 & 578 & 674 \\
p_{67}(i) & =408 & 371 & 345 \\
p_{78}(1) & =429 & 371 & 358 \\
p_{910}(i) & =759 & 690 & 700 \\
\Delta q_{N}(i) & =612 & 336 & 341
\end{array}
$$

$\begin{array}{rlll}\Delta q_{N}(i) & =401 & 616 & 469 \\ P_{12}(i) & =585731 & 691\end{array}$

Scheme 2
Table IV
Lowest Energy Singlet States of Molecules of Compounds C_{1}, A_{2} and A_{3}
Symmetry of the models used, energy of the ground state $E_{S}^{\pi}(0)$, excitation energy $E_{\mathrm{k}}^{\mathrm{S}}=E_{\pi}^{\mathrm{S}}(k)-E_{\pi}^{\mathrm{S}}(0)$, its equivalents $v_{\mathrm{k}}, \lambda_{\mathrm{k}}$, components of the transition moment $\left(\boldsymbol{M}_{\mathrm{ok}}\right)_{\mathbf{x}, \mathrm{y}}$ and oscillator strength values f_{k}. Experimentally determined wavelengths $\lambda_{\mathrm{k}}^{\prime}$ corresponding to the absorption maxima and measured oscillator strengths f_{k}^{\prime}. Cyclohexane as solvent, cell thickness 1 mm , concentration (in mol $\left.{ }^{-1}\right) 0.0038\left(\mathrm{C}_{1}\right), 0.00019\left(\mathrm{~A}_{2}\right)$ and $0.00013\left(\mathrm{~A}_{3}\right)$. Terms represented in the expansion of wave functions by less than 5% are omitted.
$\left.\begin{array}{llll}\text { Sym- } \\ \text { metry }\end{array}\right]$

S(2)	A_{u}	-0.944	$\mathrm{S}(11 \rightarrow 12)$	$+0.2614$	$\mathrm{S}(10 \rightarrow 16)$	$+\ldots$						
S(3)	A_{u}	-0.416	$\mathrm{S}(11 \rightarrow 13$	$+0.5634$	$\mathrm{S}(11 \rightarrow 15)$	-0.4990	$S(10 \rightarrow 14)$	-0.2697	$S(9 \rightarrow 12)$	-0.3122	S(8 \rightarrow 16)) $+\ldots$
S(4)	A_{g}											
S(5)	A_{g}											
S(6)	$\mathrm{A}_{\text {u }}$	0.839	$\mathbf{S}(11 \rightarrow 17)$	-0.3284	$\mathrm{S}(10 \rightarrow 16)$	-0.2263	$S(7 \rightarrow 13)$	+ ...				
S(7)	A_{g}											
S(8)	A_{u}	$\begin{aligned} & -0.333 \\ & +0.243 \end{aligned}$	$\begin{aligned} & S(11 \rightarrow 13) \\ & S(7 \rightarrow 12) \end{aligned}$	$\begin{aligned} & +0.5522 \\ & +0.2251 \end{aligned}$	$\begin{aligned} & S(11 \rightarrow 14) \\ & S(6 \rightarrow 13) \end{aligned}$	$\begin{aligned} & +0.2532 \\ & -0.3079 \end{aligned}$	$\begin{aligned} & S(10 \rightarrow 14) \\ & S(6 \rightarrow 15) \end{aligned}$	$\begin{aligned} & +0 \cdot 2498 \\ & +\ldots \end{aligned}$	$\mathrm{S}(9 \rightarrow 12)$	$+0.3467$	$S(8 \rightarrow 16)$	
S(9)	A_{g}											
S(10)	A_{g}											
S(11)	$\mathrm{A}_{\text {u }}$	$\begin{aligned} & -0.397 \\ & -0.299 \end{aligned}$	$\begin{aligned} & S(11 \rightarrow 13) \\ & S(6 \rightarrow 15) \end{aligned}$	$\begin{aligned} & +0.2757 \\ & +\ldots \end{aligned}$	$S(9 \rightarrow 12)$	-0.6078	$S(7 \rightarrow 12)$	$+0.2949$	$S(7 \rightarrow 17)$	-0.2896	$S(6 \rightarrow 13)$	
S(12)	A_{u}	0.351	$\mathrm{S}(11 \rightarrow 17)$	$+0.4979$	$\mathrm{S}(10 \rightarrow 16)$	-0.2945	S($9 \rightarrow 15$)	-0.4030	$\mathrm{S}(8 \rightarrow 14)$	-0.4594	$S(6 \rightarrow 12)$	+ \ldots

Fig. 3
Spectrum of Co
 the Case of the Gaussian Shape of the Extinction Curves Cyclohexane as solvent (c in $10^{-4} \mathrm{~mol}^{-1}$), $d=$ $=0.1 \mathrm{~cm}, h \mathrm{in} 10^{3} \mathrm{~cm}^{-1}$ (- experimental, constructed). $a: c=3.8, h_{1}=3.73, h_{2}=4.02, h_{3}=$ $=h_{4}=2 \cdot 70 ; b: c=1 \cdot 9, h_{1}=h_{2}=h_{7}=h_{8}=3 \cdot 00$,
$h_{4}=3 \cdot 5, \quad h_{5}=h_{6}=4 \cdot 90 ; \quad c: c=1 \cdot 3, \quad h_{1}=3 \cdot 00$,
$h_{2}=5 \cdot 20, \quad h_{3}=h_{6}=h_{8}=4 \cdot 00, \quad h_{11}=h_{12}=6 \cdot 10$.

| $\mathrm{S}(11)$ | A_{u} | $-0.3978 \mathrm{~S}(11 \rightarrow 13)+0.2757 \mathrm{~S}(9 \rightarrow 12)-0.6078 \mathrm{~S}(7 \rightarrow 12)+0.2949 \mathrm{~S}(7 \rightarrow 17)-0.2896 \mathrm{~S}(6 \rightarrow 13)$ |
| :--- | :--- | ---: | :--- |
| $\mathrm{S}(12)$ | A_{u} | $0.3518 \mathrm{~S}(11 \rightarrow 17)+0.4979 \mathrm{~S}(10 \rightarrow 16)-0.2945 \mathrm{~S}(9 \rightarrow 15)-0.4030 \mathrm{~S}(8 \rightarrow 14)-0.4594 \mathrm{~S}(6 \rightarrow 12)+\ldots$ |

Table IV
(Continued)

State	Symmetry	$\begin{gathered} E_{\pi}^{S}(0) \\ \mathrm{eV} \end{gathered}$	$\begin{aligned} & E_{\mathrm{k}}^{\mathrm{S}} \\ & \mathrm{eV} \end{aligned}$	$10^{3} \mathrm{~cm}^{v_{\mathrm{k}}-1}$	$\begin{gathered} \lambda_{\mathrm{k}} \\ \mathrm{~nm} \end{gathered}$	$\begin{gathered} \left(M_{\mathrm{ok}}\right)_{x} \\ \mathrm{D} \end{gathered}$	$\underset{\mathrm{Dk}}{\left(\boldsymbol{M}_{\mathrm{ok}}\right)_{\mathrm{y}}}$	f_{k}	$\begin{gathered} \lambda_{\mathrm{k}}^{\prime} \\ \mathrm{nm} \end{gathered}$	f_{k}^{\prime}
Molecule C_{1}, classification according to $\mathrm{C}_{2} \mathrm{v}$										
S(0)	A_{1}	-219.76	0							
S(1)	B_{2}		4.386	$35 \cdot 38$	282.65	0	-0.345	0.046	287^{a}	0.03
S(2)	A_{1}		5.278	42.57	234.90	0.898	0	0.372	$234{ }^{\text {b }}$	0.15
S(3)	B_{2}		6.329	51.05	195.88	0	-0.981	0.533	$201{ }^{\text {c }}$	
S(4)	A_{1}		6.498	52.41	$190 \cdot 80$	-1.196	0	0.814		
Molecule A_{2}, classification according to C_{2}										
S(0)	A	-491.48	0							
S(1)	B		4.336	34.98	285.91	-0.069	0	0.002		
S(2)	A		4.345	. 35.05	285.32	0	-0.332	0.042		0.37
S(3)	B		4.428	35.72	279.96	1.355	0	0.712		0.37
S(4)	A		5.520	44.52	224.60	0	-0.291	0.041	${ }^{\text {d }}$	
S(5)	B		5.786	$46 \cdot 67$	214.27	0.511	0	0.132		
S(6)	A		4.873	47.37	$211 \cdot 11$	0	0.637	0.209	203	
S(7)	A		6.255	50.46	198.19	0	-0.167	0.015	203	
S(8)	B		6.272	50.59	197.66	$1 \cdot 103$	0	0.667		
Molecule A_{3}, classification according to C_{i}										
S(0)	A_{g}	--935.49	0							
S(1)	A_{u}		4.010	$32 \cdot 34$	309-20	-0.124	$0 \cdot 308$	0.039		
S(2)	A_{u}		4.088	32.97	303.27	1.570	0.946	1.202	302	$0 \cdot 6$
S(3)	A_{u}		$4 \cdot 281$	34.53	289.57	0.369	-0.206	$0 \cdot 067$		
S(4)	A_{g}		$4 \cdot 28$	forbidd	ansition					
S(5)	A_{g}		$4 \cdot 83$	forbidd	ansition					
S(6)	A_{u}		5.476	$44 \cdot 17$	226.39	-0.017	-0.355	0.061		

To determine the coulomb integrals γ, Mataga's approximation ${ }^{15} \gamma_{\mu v}=14.3994$: : $\left(a_{\mu v}+r_{\mu v}\right)$ was used, where $a_{\mu \nu}$ is a constant characteristic of the given pair of AO χ_{μ}, χ_{ν} and the valence-state of atoms $\mu, v ; r_{\mu v}$ denotes the distance between the centres $\mu \nu$.

The system of Hartree-Fock's equations was solved by the method of successive approximations; the zero approximation $\boldsymbol{C}^{(0)}=\left(C_{\mu j}^{(0)}\right)(\mu=1,2, \ldots, M, j=1,2, \ldots, M)$ of the matrix of eigenvectors $\boldsymbol{C}=\left(C_{\mathrm{j} j}\right)$ was set up from the HMO molecular orbitals. The iterative process was terminated when for certain m for all MO (i) the condition $\left|\varepsilon_{i}^{(m+1)}-\varepsilon_{i}^{(m)}\right|<10^{-4} \mathrm{eV}$ was fulfilled for the values of the orbital energies $\varepsilon_{i}(\mathrm{eV})$.

The values of parameters $Y_{\mu}, Z_{\mu}, a_{\mu v}, \beta_{\mu v}$ for the carbon atoms of benzene rings and nitrogen atoms of diphenylamine and $\mathrm{N}, \mathrm{N}^{\prime}$-diphenyl- p-phenylenediamine were taken from Klessinger's paper dealing with the molecule of aniline ${ }^{9}$, similarly as it was done by Tyutyulkov, Fratev and Petkov ${ }^{10}$ for conjugated amines:

$$
\begin{array}{ll}
a_{\mathrm{CC}}=1 \cdot 2996 \AA, & a_{\mathrm{CN}}=1 \cdot 2043 \AA \\
a_{\mathrm{NN}}=1.1220 \AA, & \beta_{\mathrm{CC}}=-2.3194 \mathrm{eV}, \\
\beta_{\mathrm{CN}}=-2.30 \mathrm{eV}, & Y_{\mathrm{C}}=-11.16 \mathrm{eV}, \\
Y_{\mathrm{N}}=-22.63 \mathrm{eV}, & Z_{\mathrm{C}}=1 . \\
Z_{\mathrm{N}}=2, &
\end{array}
$$

It should be mentioned that Y_{μ} is equivalent to $W_{\mu}-\sum_{\mu \neq \mathrm{v}}\left(\mu\left|U_{\nu}\right| \mu\right)$ from the paper by Klessinger and Z_{μ} denotes the number of electrons by which the centre contributes to the π-system of the molecule.

For the bond length $\mathrm{C}-\mathrm{N}$ in compounds $\mathrm{A}_{2}, \mathrm{~A}_{3}$ we used the value determined by the X-ray analysis for $4,4^{\prime}$-dichlorodiphenylamine ${ }^{16}, r_{\mathrm{CN}}=1.45 \AA$. For the molecule of aniline, also given here to facilitate comparison, the value $r_{\mathrm{CN}}=1.43 \AA$ was left, similarly to Klessinger. The molecules under investigation were idealized as planar. The bond angle at the nitrogen atom was chosen 120°. The position of the axes XY can be seen from Scheme 1.

In the case of the molecules of aniline and diphenylamine, all SCF LCAO-MO were included into interaction of monoexcited configurations; for $\mathrm{N}, \mathrm{N}^{\prime}$-diphenyl-$p$-phenylenediamine, only those configurations $K=(v \rightarrow j)$ were used for which it holds $4 \leqq v \leqq 11 \leqq j \leqq 17$. Wave functions $\mathrm{S}(k)$ for singlet excited states with lowest energies were determined by diagonalization. They are summarized in Table IV, along with the values $E_{\mathrm{k}}^{\mathrm{S}}=E_{\pi}^{\mathrm{S}}(k)-E_{\pi}^{\mathrm{S}}(0)$, where $E_{\pi}^{\mathrm{S}}(0)$ denotes the π-electron energy of the ground state S_{0}. Moreover, the Table includes values of the important quantity f_{k}, the oscillator strength, which for a spectral transition with the frequency $\nu_{0 k}\left(\mathrm{~cm}^{-1}\right)$
is given by $f_{\mathrm{k}}=1.085 \cdot 10^{11} v_{0 \mathrm{k}}\left|\boldsymbol{M}_{0 \mathrm{k}}\right|^{2} ; \boldsymbol{M}_{0 \mathrm{k}}$ denotes the transition moment $\boldsymbol{M}_{0 \mathrm{k}}=$ $=\left[\mathrm{S}(0)\left|\sum_{t} e_{\mathrm{t}} \boldsymbol{r}_{\mathbf{t}}\right| \mathrm{S}(k)\right] ; \boldsymbol{r}_{\mathbf{t}}$ is the position vector of a particle having an index t. Table IV also contains equivalents of the values $E_{\mathrm{k}}^{\mathrm{S}}, v_{0 \mathrm{k}}\left(\mathrm{cm}^{-1}\right), \lambda_{\mathrm{k}}(\mathrm{nm})$, as well as positions of the absorption maxima $\lambda_{k}^{\prime}(\mathrm{nm})$ and oscillator strengths f_{k}^{\prime} determined experimentally.

If we keep the notation used in the preceding text and in Figures, it holds for the relative absorption $A(v)$

$$
\begin{equation*}
A(v)=100\left[1-10^{-\mathrm{cd}} \varepsilon(v)\right] \tag{1}
\end{equation*}
$$

where c is concentration of solution ($\mathrm{mol} / \mathrm{l}$) and d is thickness of the absorbing layer of solution (cm). A rough theoretical construction of the absorption spectra by means of the calculated values of $v_{\mathrm{k}}\left(\mathrm{cm}^{-1}\right), f_{\mathrm{k}}$ and estimated half-widths of the corresponding bands $h_{\mathrm{k}}^{\prime}\left(\mathrm{cm}^{-1}\right)$ allowing an overall comparison of the recorded spectra and calculated results, is based on an assumption of the Gaussian shape of the extinction curves corresponding to the individual spectral transitions.

$$
\begin{equation*}
\varepsilon_{\mathrm{k}}^{\mathrm{G}}(\nu)=\varepsilon_{\mathrm{k}}^{\mathrm{G}}(\max) \exp \left\{-4(\ln 2)\left[\frac{\left(v-v_{\mathrm{k}}\right)}{h_{\mathrm{k}}^{\prime}}\right]^{2}\right\} ; \quad\left(\varepsilon_{\mathrm{k}}^{\mathrm{G}}\left(v_{\mathrm{k}}\right)=\varepsilon_{\mathrm{k}}^{\mathrm{G}}(\max)\right) . \tag{2}
\end{equation*}
$$

We obtain, by numerical calculations,

$$
\begin{equation*}
\int_{0}^{\infty} \varepsilon_{\mathrm{k}}^{\mathrm{G}}(v) \mathrm{d} v=1.0645 h_{\mathrm{k}}^{\prime} \varepsilon_{\mathrm{k}}^{\mathrm{G}}(\max), \tag{3}
\end{equation*}
$$

so that it follows from the assumption made about the shape of the extinction curve $f_{\mathrm{k}}=4 \cdot 32 \cdot 10^{-9} \cdot 1 \cdot 0645 h_{\mathrm{k}}^{\prime} \varepsilon_{\mathrm{k}}^{\mathrm{G}}(\max)$.

If after a preliminary assignment of bands we make an estimate of the half-widths h_{k}^{\prime}, we can determine the individual $\varepsilon_{\mathrm{k}}^{G}(\max)$ and thus also the shape of the functional dependence $\varepsilon_{\mathrm{k}}^{\mathrm{G}}(\nu)$. By superposition of the extinction curves of all bands under consideration and using the expression for $A(v)$ we obtain the final shape of the absorption curve.

The values of $f_{\mathrm{k}}, v_{\mathrm{k}}$ necessary for the construction of the theoretical UV spectra of solutions of compounds $\mathrm{C}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}$ were taken from Table IV. The resulting spectra were retransformed into the scale of wavelengths $\lambda(\mathrm{nm})$ for the respective compounds and compared with the corresponding spectra obtained by measurements (Fig. 3). The agreement between the experimental and the constructed spectra is comparatively good, even in the case of spectral transitions of the type $S(0) \rightarrow S(3)$, $S(4)$ for diphenylamine which, as can be seen from Scheme 2, show a particularly large charge transfer from the nitrogen atom. This is an argument in favour of parameters chosen for its description.

For a singlet wave function $\mathrm{S}=s_{0} \mathrm{~S}_{0}+\sum_{K=(\nu \rightarrow j)} s_{\mathrm{K}} \mathrm{S}_{\mathrm{K}}$ the bond orders $p_{\mu v}$ or the
π-electron charges $q_{\mu}=p_{\mu \mu}$, already investigated in the HMO calculations, have their correspondence in the representation of the first order density matrix $P_{\mathrm{S}}^{(1)}\left(r_{1}^{\prime} \mid r_{1}\right)$ in the space of atomic orbitals $\chi_{\mu}, P_{\mathrm{S}}^{(1)}(\nu / \mu)$ defined by ${ }^{19,20}$

$$
\begin{gather*}
N \int S^{*}\left(x_{1}^{\prime}, x_{2}, \ldots, x_{\mathrm{N}}\right) S\left(x_{1}, x_{2}, \ldots, x_{\mathrm{N}}\right) \mathrm{d} x_{2} \ldots \mathrm{~d} x_{\mathrm{N}}= \\
=\frac{1}{2} P_{\mathrm{S}}^{(1)}\left(r_{1}^{\prime} \mid r_{1}\right) \alpha(1) \alpha^{*}\left(1^{\prime}\right)+\frac{1}{2} P_{\mathrm{S}}^{(1)}\left(r_{1}^{\prime} \mid r_{1}\right) \beta(1) \beta^{*}\left(1^{\prime}\right) \\
P_{\mathrm{S}}^{(1)}\left(r_{1}^{\prime} \mid r_{1}\right)==\sum_{v, \mu} P_{\mathrm{S}}^{(1)}(v \mid \mu) \chi_{\mu}^{*}\left(r_{1}^{\prime}\right) \chi_{\mathrm{v}}\left(r_{1}\right) . \tag{4}
\end{gather*}
$$

$P_{S(k)}^{(1)}(v \mid \mu)$ can be written in an abbreviated form as $p_{\mu v}(k)$. A formula needed for numerical calculations is contained in a well-known paper by McCoy and Ross ${ }^{17}$. Scheme 2 gives a survey of the important values of the net π-charges $\Delta q_{\mu}=Z_{\mu}-$ $-q_{\mu}(|e|)$ and bond orders for the wave functions of the lowest energy singlet states of molecules $\mathrm{C}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}$. It also makes possible a comparison between the values of these quantities obtained by the SCF method for the state S_{0} and those calculated by the HMO method.

In all cases described above an excitation of molecules of compounds $\mathrm{C}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}$ leads to a decrease in the π-electron charge $q_{N}(k)$, localized on the $2 p_{z}$ orbital of the nitrogen atom. In the case of compound C_{1}, this finding is in full agreement with the general conclusion about the behaviour of electrons of the donor substituents in similar cases as published by Bertrán, Chalvet and Daudel ${ }^{18}$. These authors explain the decrease in the electron density on the π-orbital of the atom yielding electrons when the molecule is excited by means of the perturbation calculus, discussing the magnitude of the coefficient of this atomic orbital in the expansions of the individual molecular orbitals. In zero approximation, they take as a basis the molecular orbitals of a hydrocarbon and a separate substituent; in this case, it is a lone pair on the nitrogen atom. If we proceed in a similar manner with diphenylamine, that is, if we construct its molecular orbitals from the molecular orbitals of both benzene rings and the lone pair of the amino group, the explanation given in the above paper can be used as a guideline also in our case. Such an approach to the problem, which is adequate to the idea of separated electron groups ${ }^{19}$, allows to decompose - after a preliminary compactization of expansions by means of natural orbitals ${ }^{20,21}-$ the wave functions $S(k)$ of the excited singlet states and to determine the percentual amount of the charge transfer (CT) transition from the nitrogen atom to the respective benzene rings in these functions. This amount is given by squares of coefficients of the singlet wave functions ${ }^{\mathrm{k}} S_{\mathrm{K}(\mathrm{k})}, \mathrm{K}(k)=\left(\mathrm{l} . \mathrm{p} . \rightarrow{ }^{\mathrm{k}} \tilde{\varphi}_{\mathrm{h}(\mathrm{k})}\right)$ (ref. ${ }^{9}$) in the expansion of the wave function $S(k)$, where ${ }^{k} \tilde{\varphi}_{h(k)}$ is a molecular orbital close to the orbital $\varphi_{\mathrm{h}(\mathrm{k})}$ of an unperturbed benzene ring.

The results thus obtained for aniline ${ }^{9}$ (Table V) are closely connected with a depression of the π-electron charge on the nitrogen atom, $d_{N}(k)=q_{N}(0)-q_{N}(k)$,
due to excitation. The percentual amount of the (CT) transitions in the wave functions $\mathrm{S}(k)$ of diphenylamine with the depression $d_{\mathrm{N}}(k)\left(\right.$ ref. $\left.{ }^{22,23}\right)$ is compared in the same Table.

For the carbon atoms, an agreement between the charges, both calculated and determined experimentally, was demonstrated by Klessinger for the $S(1)$ state of aniline with an accuracy of 0.03 e . If a similar agreement is assumed also for the other cases, and the net π-charges on the atoms are accepted as a guideline for the determination of the centres of the nucleophilic and electrophilic reactions ${ }^{10}$, we can follow, in Scheme 2, the rearrangement of these centres by the transitions from the ground to the excited states.

The knowledge of changes of the bond orders also yields a valuable information about the trend of their length changes. A considerable increase in the bond order of the $\mathrm{C}-\mathrm{N}$ bond in the $\mathrm{S}(3)$ state of compound A_{2} obviously signalizes its appreciable contraction, etc.

In conclusion we should like to add a note about the basicity of compounds under investigation. Tyutyulkov, Fratev and Petkov ${ }^{10}$ found an excellent correlation, close to linear proportionality, between the calculated magnitude of the π-electron charge on the nitrogen atom, and the experimental value of the constant $\mathrm{p} K_{\mathrm{a}}$, of several aromatic amines, including also compounds $\mathrm{C}_{1}, \mathrm{~A}_{2}$. They used this correlation in their paper also to make a prognosis of the values of the constant $\mathrm{p} K_{\mathrm{a}}$ for the excited states. If we notice that the calculated values of $q_{\mathrm{N}}(0)$ for compounds $\mathrm{A}_{2}, \mathrm{~A}_{3}$ differ but slightly, we can expect the same for the constants $\mathrm{p} K_{\mathrm{a}}(\mathrm{I})$, which characterize the basicity of the corresponding amine groups. The constant $\mathrm{p} K_{\mathrm{a}}$ for A_{2} is approximately 0.9 (ref. ${ }^{24}$).

The work described in this paper was carried out in the laboratory headed by Dr K. Ulbert to whom we are indebted for numerous comments. Our thanks are also due to Dr B. Sedláček for his support, Dr M. Tlustakkova who assisted in the preparation and purification of compounds and in the spectral measurements, Drs R. Zahradnik and J. Křiz with whom the major part of the paper was discussed, and Mrs V. Berdychová for careful technical assistance.

REFERENCES

1. Pohl H. A., Engelhardt E. H.: J. Phys. Chem. 66, 2085 (1962).
2. Yu L. T., Borredon M. S., Josefowicz M., Belorgey G., Buvet R.: International Symposium on Macromolecular Chemistry, Preprint P 360, Prague 1965.
3. Briegleb G.: Elektron-Donator-Acceptor-Komplexe. Springer, Berlin-Göttingen-Heidelberg 1961.
4. Honzl J., Ulbert K., Hádek V., Tlustáková M.: Chem. Commun. 19, 440 (1965).
5. Honzl J., Tlustáková M.: J. Polymer Sci. C 22, 451 (1968).
6. Ohmasa M.: Bull. Chem. Soc. Japan 41, 1998 (1968).
7. Kuwaka K., Sato Y., Hirota K.: Bull. Chem. Soc. Japan 37, 1391 (1964).
8. Hádek V., Zach P., Ulbert K., Honzl J.: This Journal 34, 3139 (1969).
9. Klessinger M.: Theoret. Chim. Acta 5, 236 (1966).
10. Tyutyulkov N., Fratev F., Petkov D.: Theoret. Chim. Acta 8, 236 (1967).
11. Monkhorst H. J., Kommandeur J.: J. Chem. Phys. 47, 391 (1967).
12. Streitwieser A. J.: Molecular Orbital Theory for Organic Chemists. Wiley, New York 1961.
13. Luckij A. E., Konelskaja O. N.: Ž. Obšč. Chim. 30, 3773 (1960).
14. Parr R. G.: Quantum Theory of Molecular Electronic Structure, Benjamin, New York 1963.
15. Mataga N., Nishimito K.: J. Phys. Chem. 12, 335 (1957).
16. Plieth K., Ruban G.: Z. Krist. 116, 161 (1961).
17. McCoy E. F., Ross I. G.: Australian J. Chem. 15, 573 (1962).
18. Bertrán J., Chalvet O., Daudel R.: Theoret. Chim. Acta 14, 1 (1969).
19. McWeeny R.: Rev. Mod. Phys. 32, 335 (1960).
20. Löwdin P. O.: Phys. Rev. 97, 1474 (1955).
21. Fischer-Hjalmars I.: Arkiv Fysik 21, 123 (1962).
22. Zach P.: Thesis. Charles University, Prague 1969.
23. Nešpůrek S., Zach P., Tlustáková M.: Unpublished results.
24. Spravoc̆nik Chimika B III, p. 100. Moscow 1964.
25. Scheibe H., Cradner H. H. in the book: UV Atlas of Organic Compounds. Butterworths, London 1966.
26. Nikitina A. N., Petuchov V. A., Galkin A. F., Fedotov N. S., Bulenov J. N., Aronovič P. M.: Optika i Spektroskopija 16, 976 (1964).
27. Gowenlock S. G., Trotman J.: J. Chem. Soc. 1955, 1454.
28. Kizber A. I., Pučkov V. A.: Z̆. Obš̌. Chim. 27, 2208 (1957).
29. Johnson E. A. in the book: UV Atlas of Organic Compounds. Butterworths, London 1966
[^0]
[^0]: Translated by L. Kopecká.

